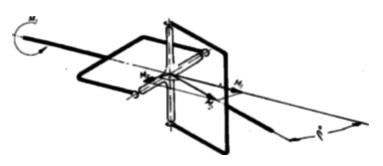
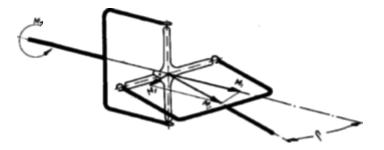
Bearing Forces and Bending Moments

By deflecting the moment in the joint, the additional moment M_Z acts on the fork. For the joint shown in Fig. 21, M_2 and M_Z are calculated by dividing the moments vectors:

Fig. 21:



Position 0° and 180° $M_2 = M_1 \cdot \cos \beta$ $M_Z = M_1 \cdot \sin \beta$

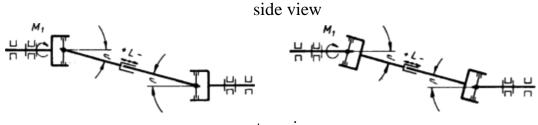


Position 90° and 270° $M_2 = M_1 \cdot 1/\cos \beta$ $M_z = M_1 \cdot \tan \beta$

7.1 Bearing Forces in Z-Arrangement

The additional moment M_Z exerts forces on the bearing which apply bending stresses to the shaft. Fig. 22 shows the additional moments and bearing forces in the 0° and 90° position.

Fig. 22:



top view

Position at $\alpha_1 = 0^\circ = 180^\circ$

Position at $\alpha_1 = 90^\circ = 270^\circ$ Propeller shaft centre under bending stress. Input and output shaft under bending stress $A=B=\frac{M_1\cdot\tan\beta}{\beta}$

$$C=D=\frac{M_1\cdot\tan\beta}{a}$$

The bearing forces swing between zero and maximum twice per rotation.

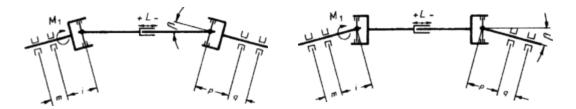
7.2 Bearing Forces in W-Arrangement

According to Fig. 23, in this arrangement the following additional moments and bearing forces apply:

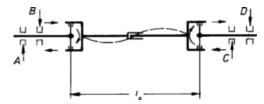
Fig. 23:

A = B = C = D = 0

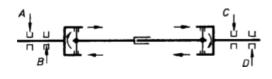
side view



top view



Position $\alpha_1 = 0^\circ = 180^\circ$ Propeller shaft centre and input and output shafts under bending stress.



Position $\alpha_1 = 90^\circ = 270^\circ$ Input and output shafts under bending stress.

$$A = \frac{2 \cdot M_{1} \cdot \sin \beta \cdot i}{l_{0} \cdot m}$$

$$B = \frac{2 \cdot M_{1} \cdot \sin \beta \cdot (m+i)}{l_{0} \cdot m}$$

$$A = B = \frac{M_{1} \cdot \tan \beta}{m}$$

$$D = \frac{2 \cdot M_{1} \cdot \sin \beta \cdot p}{l_{0} \cdot q}$$

$$C = D = \frac{M_{1} \cdot \tan \beta}{q}$$

$$C = \frac{2 \cdot M_{1} \cdot \sin \beta \cdot (p+q)}{l_{0} \cdot q}$$

The bearing forces swing between minimum and maximum twice per rotation.

7.3 Displacement Force on Propeller Shafts with Length Extension

To displace the sliding piece under the effect of torque, a displacement force L is required which must be supported by the bearing A, B, C, D.

The maximum displacement force is:

$$L = 2 \cdot \mu \cdot M_1 \cdot \left(\frac{1}{d_t \cdot \cot \tau \cdot \cos \beta} + \frac{\tan \beta}{C}\right)$$

where

μ	=	Coefficient of friction. For hardened, nitrated and/or phosphatized parts, $\mu = 0,1$ can be assumed; for rilsan-coated parts, $\mu = 0,06$
M_1	=	drive torque
dt	=	reference diameter of sliding profile (see table)
τ	=	angle between tooth flank and centre point beam (see table)
С	=	profile overlap (tooth engagement length, see table)

Table

Profile to DIN 5480	$d_t \cdot \cos \tau$ [m]	C _{min} [m]
38 x 2	0,0310	0,072
52 x 2,5	0,0427	0,100
55 x 2,5	0,0452	0,105
62 x 2	0,0503	0,075
65 x 2,5	0,0539	0,125
75 x 2,5	0,0626	0,145
90 x 2,5	0,0758	0,175
95 x 2	0,0789	0,085

This gives the bearing forces:

$$B_{axial} = C_{axial} = L \cdot \cos \beta$$
$$A = \frac{L \cdot \sin \beta \cdot i}{m}$$
$$B = \frac{L \cdot \sin \beta (i + m)}{m}$$
$$C = \frac{L \cdot \sin \beta (p + q)}{q}$$
$$D = \frac{L \cdot \sin \beta \cdot p}{q}$$

Usually only axial forces are significant.